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France 
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Abstract. The Migdal-Kadanoff renormalisation scheme, which becomes exact on hierar- 
chical lattices, is used to investigate electrical properties of 2D and 3D percolation clusters. 
We study in detail the frequency dependence of the conductivity and the loss angle, and 
the amplification of resistance (flicker) noise. This type of noise exhibits critical amplifica- 
tion, with its own exponents X and Y ,  which are related to the exponent b recently defined 
by Rammal et al. 

1. Introduction 

The properties of random resistor networks near their percolation threshold have 
motivated a lot of recent work. The static (DC) conductivity of such systems has been 
studied by various methods: transfer matrices (Derrida et a1 1982, 1983, Herrmann er 
a1 1984), real-space renormalisation group (Stinchcombe and Watson 1976, Bernasconi 
1978, Wilkinson er a1 1983), series expansion (Fish and Harris 1978), Monte Carlo 
method (Pandey and Stauffer 1983) and E = 6 -  D expansion (Harris er al 1975). The 
essential result is the occurrence of two critical exponents, t and s (which are not 
related to the static exponents like a, p, y, v )  characterising respectively the conductivity 
of a conductor (fraction p)-insulator (fraction (1 - p ) )  mixture: X - ( p -pc ) '  for p > p c ,  
and that of a superconductor-normal conductor mixture: X - ( p c  - p) - '  for p < pc .  

More generally, the conductivity X ( u l ,  u2, p )  of a random mixture of two kinds of 
elements with conductances ul (fraction p )  and u2 (fraction (1 - p ) )  exhibits the 
following scaling behaviour: 

W U l ,  u2, p )  = UIIP -Pcl 'cp*[(~2/~1)lP -Pcl-s--fl (1.1) 

when ( p  - p c )  and U J U ,  are simultaneously small. The subscript f. corresponds to 
p > p c  and p < p c  respectively. If u2 goes to zero at fixed u1 for p > p c ,  or if u1 goes 
to infinity at fixed u2 for p < p c ,  equation (1.1) reproduces the above mentioned 
behaviour of X, and hence cp+(O) is finite, while cp-(x) - x for small x. 

When x is large, cp+ and cp- both behave like Kx", such that: 

a u , ,  U 2 9  PA - Kat-"u," (1.2) 

for u2<< ul. The universal exponents s, t ,  U are related through 

U = t / ( s  + t ) .  (1.3) 
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The scaling laws (1.1)-(1.3) have been proposed in analogy with the equation of 
state of a ferromagnet near its critical temperature (Webman et a1 1975, Efros and 
Shklovskii 1976, Straley 1976, 1977), and derived by field theoretical arguments near 
Dc = 6 (Stephen 1978). The functions cp* are universal. 

Consider now the AC conductivity of a mixture of resistors (a ,  = ao) and perfect 
capacitors (a2 = i d o ) .  Its low-frequency behaviour is given by the analytic continu- 
ation of equation (1.1) to an imaginary argument: a2/a,  = iw /wo ,  where wo = uo/Co is 
the microscopic frequency scale. This has a well known consequence: the static 
dielectric constant 

1 
E = lim - Im Z ( w )  

w - 0  w 
(1.4) 

diverges as 

8 - (PC-P)rs  (1.5) 

for p + p ;  (Efros and Shklovskii 1976, Stroud and Bergman 1982, Wilkinson er a1 1983). 
It has recently been realised that percolation clusters have other amazing electrical 

properties, like the frequency dependence of the loss angle, which has been measured 
(Laugier 1982) in metallic and glass microbeads mixtures, as well as noise amplification 
(Rammal et a1 1985, Rammal 1984). 

An interesting approach to this type of properties is the study of simple analytically 
tractable models where percolation clusters are replaced by inhomogeneous determinis- 
tic fractals (Clerc et al 1984, 1985, De Arcangelis et a1 1984). 

The aim of this article is to treat the same kind of problems by the Migdal-Kadanoff 
approximation (Migdal 1976, Kadanoff 1976). This real-space renormalisation scheme, 
which is approximate for models on regular lattices, becomes exact (at least for 
non-random models) on recursively built objects called hierarchical lattices (Berker 
and Ostlund 1979). 

The paper is organised as follows. In 9 2, we recall the basic properties of two 
simple hierarchical lattices having dimension 2 and 3 respectively, and solve the static 
percolation problem on these systems. The 2~ lattice is self-dual. Section 3 is devoted 
to the above mentioned conductivity X ( a , ,  uz, p ) .  We project the renormalisation 
transformation onto a finite number of recursion relations. The loss angle is studied 
in great detail. In 0 4, we apply the same method to the problem of amplification of 
flicker noise. This noise amplification obeys scaling laws with its own critical exponents 
X and Y.  A comparison with recent results (Rammal 1984, Rammal et a1 1985) is 
presented in 9 5, as well as some conclusive remarks. 

2. Hierarchical lattices and percolation 

Let us first recall briefly the definition of the diamond hierarchical lattice. It is built 
recursively, by replacing at each step each bond by four new ones, as indicated in 
figure 1. At the Nth generation, the volume (number of bonds) is V=4N,  while the 
length between the roots A and B is L = 2 N .  The diamond lattice has therefore a 
dimension D (such that V- LD) equal to 2. 

Similar lattices with higher dimension can be obtained by replacing each bond by 
a more complicated cell. The simplest lattice having 0 = 3  corresponds to a cell 
containing four branches of two bonds each, as indicated in figure 2 ( V = 8N ; L = 2 N ) .  
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Figure 1. First three steps of the construction of the 2D (diamond) hierarchical lattice. 
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Figure 2. First two steps of the construction of the 3~ hierarchical lattice. 

We shall consider throughout the following only the lattices of figures 1 and 2 .  
The bond percolation problem is very easy to solve on these hierarchical lattices: 

one can find an exact renormalisation transform T such that the lattice at the Nth  
generation with a probability p for a bond to be occupied is strictly equivalent to a 
lattice at the ( N  - 1)th generation with a renormalised probability T (  p ) .  The quantity 
T ( p )  can be viewed as the probability for A and B to be joined at generation N = 1 
(see figures 1 and 2). It is therefore easy to show that the mapping T reads: 

T ( p )  = 1 - (1 - p 2 ) 2  ( D = 2 )  (2 . la)  

T ( p ) =  1 - ( 1  - p 2 ) 4  ( D = 3 ) .  (2 . lb)  

Another way of deriving these expressions is to use the well known Kasteleyn- 
Fortuin (1969) equivalence between bond percolation and the q-states Potts model in 
the q +  1 limit. The solution of the Potts model on the hierarchical lattices under 
consideration (Derrida et a1 1983, 1984, Itzykson and Luck 1983) leads to equation 
(2.1) for q = 1. The rest of this section reports briefly in the percolation language the 
results obtained in those papers on the Potts model. 

In the physical region ( O s p s  l) ,  the mapping T has two superstable fixed points 
at p = 1 and p = 0, describing percolating and non-percolating pure phases respectively, 
and one unstable fixed point p c  such that: 

which corresponds to the percolation threshold. The critical exponent v is also easily 
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obtained as follows. Since the correlation length 5( p )  obeys the functional equation: 

E ( p )  = 2 5 ( T ( p ) )  (2.3) 

5 ( P )  =/P-Pcl -”P ,~ ln lp-p , l l~n  P )  (2.4) 

v =In  21111 p (2.5) 

and where P, are periodic functions of their argument, with period one. These periodic 
critical amplitudes usually exhibit w r y  small oscillations (Derrida et a1 1984, Itzykson 
and  Luck 1983) (in other words P, are very close to being constants). We shall 
systematically forget about this oscillatory behaviour in the following, and consider 
equation (2.4) and similar ones as pure power laws. 

it can be shown (Derrida er a1 1984) that it behaves for p + ycf as: 

where the critical exponent v reads: 

The numerical values of p c  and v read: 

pc= i (v ’5 - l )=0 .618  033 
v = 1.635 279 

p c  = 0.281 837 
v = 1.227 411. 

D = 2  

D = 3  

( 2 . 6 ~ )  

(2.6b) 

The 2~ diamond lattice has the interesting property of being self-dual, just as the 
regular square lattice. Figure 3 shows that the dual lattice of the diamond at generation 
N is nothing other than two diamond lattices at generation ( N  - 1) with double bonds 
and sharing one root point. It has been shown by Itzykson and Luck (1983) that this 
(geometrical) duality implies that the renormalisation transform T is the square of a 
duality mapping D: 

T = D o D  (2.7) 

D( p )  = 1 - p 2 .  (2.8) 

S ( p ) = l - p .  (2.9) 

with 

The transformation D is different from the duality S on a regular square lattice: 

Figure 3. The 2D diamond lattice is geometrically self-dual. 
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In particular the self duality points are ;(A- 1) for D, and f for 6. 
Hierarchical lattices have the considerable advantage that the static percolation 

properties, in particular p c  and v, are exactly known. These values are of course 
different from those of regular (square, cubic) lattices: 

p c  = (exact) 
v = $ (den Nijs conjecture (1979)) 

D = 2  

p c  = 0.2492 * 0.0002 

v = 0.88 2 0.01 
D = 3  

( 2 . 1 0 ~ )  

(2.10b) 

(Heermann and Stauffer 1981, Wilke 1983), but the global picture is correct: see in 
particular the decrease of p c  and v between the ZD and the 3~ case. Hence we have 
a sensible framework to study random resistor systems in the following sections. 

3. The conductance of a random mixture 

3.1. Generalities 

The problem we pose ourselves in this section is the following: determine the macro- 
scopic conductivity C of our ZD or 3~ hierarchical lattice, assuming that each bond 
has a conductance which is randomly chosen between the two values: u1 (probability 
p )  and (probability (1 - p ) ) .  We consider the general case of complex conductances 
(admittances), with emphasis on the resistor-capacitor mixture mentioned in the 
introduction (a ,  = uo, u2 = iwC,). 

Consider first the ZD lattice. If c1 . . . u4 denote the conductances of the four bonds 
appearing at generation N = 1, then the conductance uR of the whole N = 1 lattice reads: 

U 1  c 2  a 3 a 4  a,=-+-. 
u,+a, a,+a, 

Therefore, if P ( u )  denotes the probability density of the conductance of one bond, 
the renormalised probability density PR( aR) is given by: 

We have therefore to study the mapping 9 
9: P(  V )  P R (  u R )  

in the functional space of all probability measures. This difficult task, which is 
characteristic of real-space renormalisation group treatments of disordered systems, 
can only be achieved through numerical techniques, or analytically in some limiting 
cases (Derrida and Gardner 1984), or else by the replacement of the infinite-dimensional 
transform by a finite number of judiciously chosen recursion relations (see Stinchcombe 
1983 for a review). We shall use this method in the following, and discuss alternative 
approaches in 0 6. 

3.2. Recursion relations and critical exponents 

Let us first remark that equation (3.1) can be decomposed into the following steps: 
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(i) evaluation of the impedances z,, zp  of the two branches between A and B 

(3 .3a)  

according to: 

z, = z1 + z ,  zp  = z, + zq 

(impedance addition for elements in series) 
- 1  (ii) evaluation of uR in terms of ua = z;’, up = z p  according to: 

U R  = U, + up (3 .36)  

(conductance addition for elements in parallel). 

the original distribution of each bond reads: 
We have therefore to investigate only the probability distribution of a sum. Since 

Q ( z )  = p ~ ( z - Z 1 ) + ( 1  - P ) 6 ( Z - Z , )  (3 .4)  

where we can assume (Zll < lZ,/, (otherwise exchange Z1 and Z,, p and ( 1  - p ) ) ,  the 
variables z,, zp are distributed with: 

Q * Q ( z )  = p 2 6 ( z  - 2 2 , )  + 2 p ( l  - p ) 6 ( z  -z1- Z,) + ( 1  - p ) 2 6 ( z - 2 z , ) .  (3 .5)  

Let us look for an ‘optimal’ binary distribution: 

Q ’ ( z )  = p ’ 6 ( z  -Z i )+  ( 1  - p ’ ) 6 ( z  -Zk) (3.6)  

which is as close to Q * Q as possible (once some closeness criteria have been given). 
Since Q’ contains five real parameters (Z ; ,  Z; are complex), we can fix five real 
conditions: the equalities 

provide us with four of them. The choice of a fifth relation has to be guided by the 
fact that the interesting region for critical behaviour is lull >> JuzI or IZ,I << IZ2(. In that 
limit, the two values 2 2 ,  and Z,  + Z2 have the same order of magnitude, while 2 Z 1  is 
much smaller. We find it therefore reasonable to impose 

p’ = p 2  (3 .8)  
(we have assumed lZ,l< lZ21). 

This equality completely determines Q’. The impedances Z ; ,  2; read: 

a b  - 1 + 2p2 - A‘” 
2bp2 

z:  = 

a b  + 1 - 2p2 + 
2 b ( 1  - p 2 )  

z; = 

( 3 . 9 a )  

(3 .96)  

with the notation 

a = 2 p Z l + 2 ( 1 - p ) Z ,  (3 .9c)  

( 3 . 9 d )  

A =  ( a b  - l ) [ a b  - ( 2 p 2 -  1)2] (3 .9e)  

and with the square-root branch analytically continued from Z ;  = 0 at Z1 = 0. When 
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IZ,( > lZzl, we just exchange 2, and Z,, p and (1 - p ) ,  before using equations (3 .8)-(3.9) .  
The way we have truncated equation (3.2) to obtain equations (3 .8)  and (3.9) cannot 
be a priori justified, since our choice is essentially motivated by physical arguments. 
Let us mention that we have tried numerous other truncation schemes, e.g. by requiring 
that the average of a third quantity cp(z), besides z and z-I ,  is preserved (see equation 
(3.7)): 

(cp(z))o*o = (cp(Z))Qf. 

Quantities like ~ ( z )  = z2  violate the duality symmetry; the quantity p ( z )  = Re In z, 
which respects this symmetry, and which is equivalent to our final choice (3.8) for 
IZ,/ << lZ21, violates elementary monotonicity properties when iterated. 

If we apply our recursion relations (3.8)-(3.9) to bond impedance addition ( 3 . 3 ~ )  
and then to branch conductance addition (3 .3b) ,  we get an approximate renormalisation 
group transform g, which can be seen as being the projection of 5 onto some 
five-dimensional (real) subspace. q has the following drawback: it is not continuous 
at points such that JZ,/ = lZ21, where the value of p' jumps from p 2  (3 .8)  for /Z,I < lZ21 
to 1 - ( 1  - - P ) ~  = 2p - p 2  for IZ,/ > lZzl (exchange the roles of Z, and Z2,  p and ( 1  - p ) ) .  
We shall see hereafter that this discontinuity is harmless in practical situations. 

Although we have considered up to now the 2~ lattice, the transform has only 
to be slightly modified to treat the 3~ case, where equation (3.3b) reads: 

(+R = (a,  + U p )  + (a ,  + U 6 1  (3.10) 

(a, P, y, 6 denote the four branches of a 3~ cell). In order to determine the distribution 
of uR, we just apply twice our convolution algorithm, as suggested by the parentheses 
in equation (3.10). 

on p is independent of Z1, Z2 (provided JZll < lZ21). Moreover, 
it is soon realised that it reproduces exactly the static mappings T defined in P 2. Since 
the sequence T " ( p )  converges towards 0 ( p < p c )  or 1 ( p > p c ) ,  the sequence 
gn(al, az, p )  is asymptotic to a non-random conductance a'"' which is related to the 
macroscopic conductivity Z( a,, az, p )  as follows: 

The action of 

Z(u,, a2, p )  = a ( n ) L 2 - D  (3.11) 

where L = 2" is the length of the lattice. This classical definition of conductivity as a 
function of conductance and geometrical characteristics ensures that Z is finite for any 
p # pc ,  and that Z = uo for a pure medium (U, = az = a,). 

Consider first the conductor-insulator mixture (U, = a,, az = 0) which is also the 
zero-frequency limit of the resistor-capacitor mixture. In this case, the action of is 
very simple: 

- P- T ( P )  
5 

where T ( p )  is as in (2 .1)  and 
g o  - 2 D-2fo( P 1 CO 

f o ( P )  = 1 / ( 2 - p 2 )  ( D = 2 )  

.Ao(P)= 1 / ( 2 - ~ ' ) [ 1 + ( 1 - ~ ~ ) ~ 1  ( D = 3 )  
and therefore the conductivity Z( a,, 0, p )  reads: 

(3.12) 

( 3 . 1 3 ~ )  

(3 .13b) 
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This expression vanishes as it should for p S pc ,  reaches the value u0 for p = 1, and 
behaves as ( p  - p c ) '  for p + p : ,  where the critical exponent t is given by: 

t = -lnfo(pc)/ln /* (3 .15 )  

or numerically 

t=1 .135279 ( D = 2 )  (3.16a) 

t = 2.242 559 (D  = 3) .  (3.16b) 

The superconductor problem ( U ,  = CO, u2 = go), or the infinite-frequency limit of 
the resistor-capacitor mixture, is also analytically tractable, since the action of g now 
reads: 

(3.17) 

where 

in any dimension. 
The macroscopic conductivity therefore reads: 

%m, go, P) = U 0  n fm( T " ( p ) ) .  
n 2 0  

(3.19) 

This expression is infinite for p 2 p c ,  reaches the value go for p = 0 and  diverges as 
( p c  - p ) - "  for p + p i ,  where the exponent s is: 

s = lnfm(pc)/ln P. (3.20) 

In three dimensions, this number reads: 

s = 0.439 675 ( D  = 3) .  (3.21) 

In two dimensions, our approximate scheme preserves the self-duality of the genuine 
renormalisation group transform 9. In particular, we have the well known duality 
relation 

(3.22) z a o ,  0, p)Z(m,  C O ,  D ( P ) )  = 

where D ( p )  is as in (2.8), from which one easily verifies the expected relation: 

s = t  ( D  = 2).  (3.23) 

3.3. Scaling functions 

The low-frequency conductivity of our resistor-insulator mixture has the following 
scaling behaviour (see ( 1 . 1  )) 

= aolp -Pcl'cp*[(iw/wo)lP -Pcl-s-fl (3.24) 

when p + p ;  and w / w o  + 0 simultaneously. Although it is straightforward to become 
convinced that our renormalisation scheme 3 indeed leads to (3.24) (with negligible 
oscillations in the variable Inlp -pcl/ln p ) ,  the mathematical study of a function like 
Z involves the essentially unexplored area of iterations of analytic functions in several 
complex variables. 
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Consider first the region p > p c .  The scaling function Q+ is real analytic around 

cp+( x ) = A + + B + x +  . . .  (3.25) 

where A+ and B, are the amplitudes of the DC (static) conductivity and dielectric 
constant: 

the origin: 

~ o c - f f o A + ( P - P c ) '  

E - C , B + ( p  -pc) - ' .  

When its argument is large, cp+ is singular: 

cp+(x) = K x " + .  . . 
' X I + =  

IArg X , < T  

(3.26) 

(3.27) 

where K and U are as in equations (1 .2)-(1.3) .  The asymptotic expansion (3.27) is 
indeed valid in a cut plane, since X can be singular only for real negative values of A 
of equation (3.9e), i.e. for real negative values of uz/u l .  The singularities of E have 
also been studied on a deterministic fractal model of percolation (Clerc et a1 1985): 
these authors find that X is discontinuous on a Cantor set of the negative real axis in 
the uz/u,  variable. 

In the non-percolating phase ( p  < p c ) ,  the scaling function Q-(x)  is regularly 
vanishing at the origin: 

cp_(x) = B - x + .  . . (3.28) 

where B- is the amplitude of the conductivity of a dilute superconductor: 

&uper - goB-( P c  - (3.29) 

and of the static dielectric constant: 

E - COB-( p c  - p ) - I .  (3.30) 

When its argument is large, cp- is asymptotic to Q+, such that E has the following well 
defined behaviour at p = pc:  

Z = Kuo exp(fi.rru)(w/w,)" 

for w<< wo. 

(3.31) 

3.4. The loss angle 

It has been pointed out that the loss angle S defined through: 

tan S = Re E/Im E (3 .32)  

is of some theoretical and experimental interest (Laugier 1982, Clerc et a1 1984, 1985). 
From the last subsection, since every constant in equation (3.31) is real, we deduce 

that 6 takes the following universal value: 

6, = f T r ( 1 -  U )  = ; T s / ( s +  t )  (3.33) 

for p = p c  and w K w,. 
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For p > p,,  we have a crossover at U*  - wo( p -p,)”‘ such that 

tan 6 - w - ‘  

tan 6 =tan 6, 

( w  << w * )  

( W * < <  w<< WO). 

For p < p c ,  w * - wo( p c  -,)’+I and 

tan 6 - w 

tan 6 =tan 6, 

( w  << w * )  

( W * < <  w<< W O ) .  

(3.34a) 

(3.346) 

What happens at w >> wo and p close to pc  depends upon a non-universal and unexpected 
criterion, namely the position of p c  with respect to 3. Indeed, if p C > &  then w 
corresponds to a superconductor problem at p = 1 - pc  < p, ,  and hence 1 is dominated 
by resistors and tan 6 - w for analyticity reasons. Conversely, if p c  < 4, the equivalent 
superconductors do percolate at p = 1 - p c >  p, ,  and tan 6 - w - ’ .  In other words, 
whenever pc  > 3, a conducting infinite cluster and an insulating one cannot coexist. 

Figures 4 and 5 show log-log plots of tan 6 against ( w / w o )  in the 2~ and 3~ models 
respectively. The universal 6, are such that: 

tan 6, = 1 (exact) 

tan 6, = 0.263 3j2 

( D = 2 )  

( D = 3 ) .  
(3.35) 

The expected asymptotic regimes are clearly visible. Let us recall that we have: 
pc(  D = 2) > :> p, (D = 3). 

For percolation on a 2~ square lattice ( p , = t ) ,  two crossovers are expected at 
w *  - o o l p  -p,l”+‘ and w**  - wolp -pel-'-', since equation (3.34) still holds and the 
duality relation now implies: 

(3.36) tan 6 ( w / w o )  tan S ( w o / w )  = 1. 

7 4  I I 1 

10-lC lU- 1 i o 5  
W/WC 

Figure 4. Log-log plot of tan 8 against ( w / w o )  in the 2D model. Values of p - p c  are 
indicated on the curves. 



Electrical and noise properties of percolation clusters 207 1 

1F’O I I I 

10-10 1 0 - ~  1 i o 5  
w l w ,  

Figure 5. Same as figure 4, for the 3D model. 

4. Scaling properties of noise spectra 

In this section, we study the properties of the observable noise spectrum of a macro- 
scopic sample of resistor-capacitor mixture. 

Two types of noise can be considered: thermal or Nyquist noise, which is indepen- 
dent of the intensity across the sample and related by the Nyquist theorem to the real 
part of its impedance, and flicker (or l/f) noise, which is proportional to the squared 
intensity (see Dutta and Horn 1981 for a review). In the following, we model the latter 
by microscopic fluctuations of resistance. 

We have chosen to model flicker noise as follows. Each resistor has a small 
time-dependent dimensionless random component A( t )  << 1: R = R,[ 1 + A (  t ) ] .  The 
noise generators are defined through their common stationary spectral density so( U ) :  

s o ( w )  = dt  exp(iwt)(A(t)A(O)). I (4.1) 

The quantity we plan to compute is the noise ampli$cation G( p ,  U ) ,  defined as follows. 
If s,,,(w) is the dimensionless spectrum of a macroscopic sample, let 

This formulation of resistor noise has been recently used by Clerc et a1 (1985). The 
factor L D  is such that G = 1 is a pure medium (cf. equation (3.11)). 

The crucial point in the determination of the renormalisation group transform 
in 0 3 was: hierarchical lattices only involve sums of two impedances and sums of two 
conductances. It is therefore sufficient to study the composition of the noise spectra 
of two sources in series and in parallel. 

Consider first two conductors a and b in series. Let Z,, z b  be their impedances; 
A,(@), &,(U) the Fourier components of their noise signals; s,, sb the associated noise 
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spectra, defined according to equation (4.1). It is elementary to show that the impedance 
of the set of conductors in series reads: 

and therefore the composed noise spectrum is 

Consider now the previous two conductors associated in parallel. Let cr, = Z;', 
(Tb = Z,' be their conductances. The conductance of the whole is now: - I 

(T = (Ta + U b  - ( (To Ob A b  ) (4.5) 

from which we get the composed noise spectrum: 

(4.6) 

Let us now use these basic results in order to extend the transform of the previous 
section to noise amplification. Assume the initial distribution of bond impedances is 
as in equation (3.4), and the corresponding noise spectra are s1 and s2 (in the case of 
the resistor-capacitor mixture at w < wo, Z1 = U;' ,  2, = ( iCow)- ' ;  s1 = so, s2 = 0). The 
distribution of branch impedances is therefore given by equations (3.6)-(3.9). In order 
to preserve the coherence of our renormalisation scheme, we impose that each imped- 
ance Zi (respectively Z;) is associated to a noise spectrum si (respectively s;). The 
values of si, s; are chosen through the same criterion as the value of p t  (equation 
(3.8)) in § 3: in the w + 0 limit (lZ,l<< lZ2\), a branch resistance is Z', if its two constituents 
have resistance Z, (implying si = 2s1), and ZS. in all other cases. The most reasonable 
way of getting a value of si out of this distribution is to average it. We obtain: 

1 -1 - 2s1 ( 4 . 7 ~ )  

Just as we did for equation (3.8),  we shall use equation (4.7) whenever lZll < lZ21. This 
lengthy discussion can be repeated for noise composition of two branches in parallel. 
The result is (lull < /u2/):  

1 -1 - 2s1 ( 4 . 8 ~ )  

9 therefore acts as follows: apply equation (4.7) once and then equation (4.8) once 
in the ZD case; apply equation (4.7) once and then equation (4.8) twice in the 3~ case. 

Just as in the previous section, the w = 0 (DC) limit is analytically tractable, since 
the action of simplifies: 

( 4 . 9 ~ )  
(4.9b) 
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with 

4 - 3p2 
g ( p ) = 2 - p Z  ( D = 2 )  

3p+  1 
P + l  

(all D). 

(4.1 Oa ) 

(4.10b) 

( 4 . 1 0 ~ )  

Consider first the percolating phase ( p  > pc). Starting from s(lo) = so, syi  = 0 and 
applying g a large number of times, we get the following limiting result: 

lim = G(p ,  0) = n g (  T " ( p ) )  (4.11) 
n a O  n - c c  

where G has been defined in equation (4.2). G( p, 0) goes to one as p goes to one: 
this justifies the factor LD in the definition (4.2) of G. More interesting is the critical 
regime: as p + p:, G( p, 0) diverges according to 

(4.12) 

where the critical exponent X reads: 

x =In g(pc)/ln P (4.13) 

i.e. numerically 

X = 1.338 958 ( D = 2 )  ( 4 . 1 4 ~ )  

X = 2.343 155 ( D = 3 ) .  (4.14b) 

Since G(p, w )  is by definition the amplification of the spectrum of the dimensionless 
quantity A( t ) ,  the resistance fluctuations of a macroscopic sample have the following 
spectral density: CDso(w)G(p ,  w)lZ(w)12, where Z ( w )  is the total impedance of the 
sample. 

In the non-percolating phase (p <pc),  the static (DC) amplification G(p, 0) vanishes 
identically, since the initial condition s 2 ( w )  = 0, which is valid for all U, is preserved 
by the action of 9 in the w = O  limit. 

At non-zero frequency, G(p, w )  is non-zero in both phases. For w << wo and p < pc, 
G(p, w )  behaves like 

(4.15) 

where the amplitude l (p )  vanishes regularly at p + 0, and diverges as p + pc according 
to 

G(p, 0) = I(p)w2/wi+. . . 

(4.16) 
In the general AC case ( w  # O), our procedure leads to a well behaved function 

G (  p ,  w ) .  This amplification exhibits the following scaling behaviour for p + p z  and 
w / w o +  0 simultaneously: 

G(P, @ I =  l~-Pcl-xx*~~~l~o~lP-~cl-i-~l. (4.17) 

Let us point out a basic difference between the scaling functions (4.17) of noise 
amplification and those (3.24) of the ccnductivity. Since the step (4.8) of the action 

X - Z ( s + r )  Qp)-(Pc-P)- 
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of on noise amplification is non-analytic, xi do not have any particular analyticity 
property, and their argument x is to be viewed as a real variable. When the variable 
x gets large, the functions x* both behave like: 

x * ( x )  - ox- (4.18) 

with 

Y = X / ( s  + t )  (4.19) 

and where is some constant. 

low-frequency behaviour: 
In particular, noise amplification a t  the percolation threshold has the following 

apt, w )  - o ( w / @ o ) - y .  (4.20) 
W - 0  

The numerical values of this new exponent read: 

Y = 0.589 704 ( D = 2 )  ( 4 . 2 1 ~ )  

Y = 0.873 583 ( D = 3 ) .  (4.21b) 

Figures 6 and 7 show log-log plots of G(p ,  w )  against ( w / w o )  for different values 
of p - p c  in the 2~ and 3~ models respectively. We present only results for p > pc  for 
clarity. 

The high-frequency behaviour of G ( p ,  w )  is determined by the same criterion as 
the one of the loss angle (see § 3.4). Namely, when pc> 4 ( 2 ~  case), resistors dominate 
the w +oo limit and G(p ,  CO) is finite; when p c < ;  ( 3 ~  case), capacitors dominate the 
w + CO limit, and G( p ,  w )  - w - ~ .  This difference is clearly visible in figures 6-7. 

c 

1 I I 

1 10' 
IF2 

w l w ,  

Figure 6. Log-log plot of flicker noise amplification function G(p,  w )  against ( w / w a )  in 
the 2~ model for p > pc .  Values of p - pc are indicated on the cuwes. 
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wlwc 

Figure 7. Same as figure 6, for the 3~ model. 

5. Conclusions 

We have used hierarchical lattices in dimension 0 = 2  and 0 = 3  to study electrical 
properties of percolation clusters at and around p c .  The static quantities of these 
models can be computed exactly. The results coincide with those of the Migdal- 
Kadanoff renormalisation scheme on regular (square and cubic) lattices. 

for the bond conductance distri- 
bution leads to a complete determination of the conductivity Z as a function of p and 
w. has the advantage of preserving the self-duality of the 2~ model. Of course the 
values of s and t are not equal to their (numerically known) values for regular lattices, 
but the disagreement is never violent: in the worst case, s ( D  = 3)  = 0.439 675 from 
equation (3.21), to be compared with 0.75 * 0.04 from Herrmann et a1 (1984) ( s /  v = 
0.85 f 0.04), Heermann and Stauffer (1981) ( U  = 0.88 * 0.01). 
If we insert (5.2) into (5.1), we get a nonlinear (convolution) integral equation for 
hierarchical lattices. The critical exponents t and s associated with the exact integral 
equation (3.2) can be numerically determined by the following procedure, originated 
by Stinchcombe and Watson (1976). These authors have considered the 2~ case, and 
looked for a fixed probability distribution of the form: 

p*(c+)  = (1 - p c ) S ( u ) + p C R ( c + )  (5.1) 

Y { p * ( c + ) }  = ~ p * ( h c + ) .  (5.2) 

An approximate renormalisation transformation 

which transforms into itself up to a scale A under the renormalisation operator 9: 

If we insert (5.2) into (5.1), we get a nonlinear (convolution) integral equation for 
the function R(c+), which is easy to solve by a discretisation of the variable u. The 
exponent s = t is then given by: 

(5.3) s = t =In A/ln p 

where p is as in (2.2). 
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We have generalised this method to the 3~ case, where the lack of a duality symmetry 
forces us to look for two fixed distributions: 

(5.4a) 

(5.4b) 

Let A , ,  A 2  denote the associated ‘eigenscales’ of the operator 9. The exponents s and 
t then read: 

t = In(2A,)/ln p (5.5a) 

s = -ln(2A2)/ln p (5.5b) 

where the factor 2 occurring in these equations takes into account the geometrical 
factor LD-* of equation (3.11). Our results read: A = 1.760 for D = 2  (Stinchcombe 
and  Watson get A = 1.756); A ,  = 1.877 and A 2  = 0.351 for D = 3. The associated values 
of the exponents read: 

t ( D  = 2) = s ( D  = 2) = 1.334 

t (  D = 3)  = 2.342 

s( D = 3)  = 0.627. 

( 5 . 6 ~ )  

(5.6b) 

( 5 . 6 ~ )  

However the numerical treatment of the exact integral operator 9 is very hard to 
extend to more complicated quantities, like the AC conductivity or noise amplification. 
We have therefore used the truncated transform 3 to study the w dependence of the 
conductivity C, and consequently of the loss angle 6. The global picture of these curves 
seems to be very close to experimental ones (see Clerc et a1 1984, Laugier 1982). 

An extension of the mapping 9 to the resistance noise spectra allows for a detailed 
study of their critical properties. For p > p, ,  DC amplification rates diverge with the 
exponent X :  C;,=,- ( p  -p , ) -” .  At p = p, ,  the low-frequency amplification diverges 
with the exponent Y :  G(p, ,  w )  - H ( p , ,  w )  - ( ~ / w , , - ~ .  The two critical exponents X 
and Y are related to the exponent b of Rammal et a1 (1985) through: 

(5.7) (s+ t )  Y = X = ( D -  b)v. 

For p < p , ,  flicker noise amplification vanishes in the DC limit and behaves like w 2  for 
w << 00. 

Our results imply the following values for the exponent b: 

b = 1.181 204 ( D = 2 )  (5.80) 

b = 1.090 977 ( D = 3 ) .  (5.8b) 

Table 1 summarises the values of p c  and the critical exponents predicted by our 
model (truncated transform T), together with other predictions: numerical work on 
regular lattices, and our results (5 .6)  using Stinchcombe and  Watson’s method. It 
would be interesting to have numerical estimates of the noise exponents X, Y, b for 
regular Z D  and  3~ lattices. 

Since the exponent Y = 0.873 is close to unity in the 31) case, the critical amplification 
by a percolative structure of a microscopic white noise roughly leads to a l/f spectrum. 
This could therefore be an explanation of the  occurrence of l l fno ise  in some disordered 
materials. 
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Table 1. Summary of the values of pc and the critical exponents predicted by our model, 
compared with other sources: *, our results using Stinchcombe and Watson’s method; 
den Nijs (1979), ’ Herrmann et al (1984); Derrida et 
al (1983); e Wilke (1983). 

Heermann and Stauffer (1981); 

Quantity Present model Other sources 

0.618 034 f (exact) 
4 a  v 1.635 279 5 

s = t  1.135 279 1.303*0.01’; 1.334* 
X 1.338 958 
Y 0.589 704 
b 1.181 204 

o=3 
P C  0.281 837 0.2492 i 0.0002‘ 
v 1.227 411 0.88 i O.OIc  
5 0.439 675 0.75 -0.04’; 0.627* 
t 2.242 559 1.9 * O.ld; 2.342* 
X 2.343 155 
Y 0.873 583 
0 1.090 977 
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